Scientists just got closer to making nuclear fusion work

nuclear plant

(Frédéric Paulussen, Unsplash)

This article is brought to you thanks to the collaboration of The European Sting with the World Economic Forum.

Author: Rosamond Hutt, Senior Writer, Formative Content & Keith Breene, Formative Content


Proponents of nuclear fusion see it is as a clean and virtually limitless energy source that could power the future. But while researchers are confident they can make it work, realizing the long-held dream of fusion power is proving far from easy.

Potentially offering an inexhaustible supply of zero-carbon energy, nuclear fusion has shown great promise for decades but is yet to be viable at scale because maintaining a fusion reaction requires more power than it generates.

However, recent advances in the quest for fusion power have reignited hopes that it can be made feasible.

Scientists in China have built a fusion reactor that in November became the first in the world to reach 100 million degrees Celsius. That’s nearly seven times hotter than the sun’s core and the temperature at which hydrogen atoms can begin to fuse into helium.

The achievement by China’s Institute of Plasma Physics at its Experimental Advanced Superconducting Tokamak (EAST) is a milestone on the fusion journey, and will provide valuable insights for the International Thermonuclear Experimental Reactor (ITER) project, a collaboration between the European Union, India, Japan, China, Russia, South Korea and the United States.

 

At an estimated cost of $25 billion, the consortium is building a prototype fusion reactor, called a tokamak, in southern France. It aims to conduct a first test of super-heated plasma by 2025 and generate first full-power fusion by 2035.

Although the ITER is the biggest and most expensive project, there are more than a dozen other fusion research initiatives under way.

Last year a privately funded UK venture called Tokamak Energy announced its plasma had hit 15 million degrees Celsius for the first time.

A collaboration between MIT and the start-up Commonwealth Fusion Systems is designing a fusion reactor capable of producing more power than it consumes. Their research will complement the work done by ITER.

And the Canadian government announced last year it is investing US$37.5 million in General Fusion, a company founded in 2002 that focuses on an approach known as magnetized target fusion.

The tokamak is an experimental machine designed to harness the energy of fusion.
Image: ITER.org

What is ‘fusion’ exactly?

Fusion is the reaction that powers the Sun. It’s produced when two light atoms fuse into one under extreme pressure and temperature. The total mass of the new atom is less than that of the two that formed it; the “missing” mass is given off as energy, as described by Albert Einstein’s equation E=mc2.

Fission, which is the energy source in current nuclear power stations, involves splitting an atom’s nucleus.

Fusion has the potential to deliver much more power than fission, but without the long-lasting radioactive waste.

There are several “recipes” for cooking up fusion, which rely on different atomic combinations.

The most promising combination for power on Earth today is the fusion of a deuterium atom with a tritium one. The process, which requires temperatures of approximately 39 million degrees Celsius, produces 17.6 million electron volts of energy.

Deuterium is a promising ingredient because it is an isotope of hydrogen. In turn, hydrogen is a key part of water. A gallon of seawater (3.8 litres) could produce as much energy as 300 gallons (1,136 litres) of petrol.

Fusion occurs when atoms are heated to very high temperatures, causing them to collide at high velocity and fuse together. When two light nuclei collide to form a heavier nucleus the process releases a large amount of energy.
Image: General Fusion

Putting theory into practice

While fusion power offers the prospect of a clean source of energy, it has also presented many so-far-insurmountable scientific and engineering challenges.

In the sun, massive gravitational forces create the right conditions for fusion in its core, but on Earth they are much harder to achieve.

Fusion fuel – different isotopes of hydrogen – must be heated to extreme temperatures, and must be kept stable under intense pressure, and dense enough and confined for long enough to allow the nuclei to fuse.

And this is where progress has been made. Advances in magnet technology have enabled researchers at MIT to propose a new design for a practical compact fusion reactor that might deliver a net power output perhaps within the next decade or so.

New superconducting magnets would enable the reactor to operate in a sustained way, producing a steady power output, unlike today’s experimental reactors that can only operate for a few seconds at a time without overheating.

The era of practical fusion power may finally be coming nearer.

Advertising

the sting Milestone

Featured Stings

Can we feed everyone without unleashing disaster? Read on

These campaigners want to give a quarter of the UK back to nature

How to build a more resilient and inclusive global system

Stopping antimicrobial resistance would cost just USD 2 per person a year

Young people are key to defusing unrest and restoring public trust

‘Countless opportunities’ for new people-centred workplace, but ‘decisive action’ critical

Malta: MEPs conclude fact-finding visit to assess Caruana Galizia murder inquiry

The opportunity of studying Medicine abroad

Parliament approves EU rules requiring life-saving technologies in vehicles

How smartphones can close the global skills gap for billions

How many websites are there?

UN chief calls for ‘far greater support’ for Cyclone Idai response

This is what the UK’s major supermarkets say about plastic packaging and the environment

Parliament boosts efforts to improve its environmental performance

Does the Greek deal strengthen the Eurozone? Markets react cautiously

Confidence-building measures continue in new Yemen prisoner-swap talks

On our way to China

New skills agenda for Europe needs real investment

4 reasons why women should lead the G7 agenda in 2018

There is no greater sorrow on earth than the loss of one’s native land

Recovering from COVID-19: these are the risks to anticipate now – before it’s too late

The ECB must extend its money stimulus beyond 2018: Draghi reckoning

Main results of EU Environment Council, 25/06/2018

Here’s how to check in on your AI system, as COVID-19 plays havoc

Ship Recycling is the Commission’s Titanic

TTIP update: postponed vote and INTA meeting shuffle cards again

Fighting against the Public Health System dismantling means guaranteeing assistance to all

These 4 Nordic countries hold the secret to gender equality

Ukraine-EU deal sees the light but there’s no defeat for Russia

EU-Turkey relations: Will Turkey manage to revive the EU accession process talks?

‘Africa has both the energy and the determination’ to make sustainable development happen, says UN deputy chief

Eurozone’s central bank leadership prepares for shoddier prospects

“BRI cooperation is entering a new stage: we need a new and more constructive approach rather than waste time on suspicion”, China’s Ambassador to EU Zhang Ming underlines live from European Business Summit 2019 in Brussels

Gender disparity in salary and promotion in medicine: still a long way to go

Canada has the most comprehensive and elaborate migration system, but some challenges remain

Dramatic funding shortages a ‘severe catastrophe’ for people of Gaza: UN Coordinator

The Commission accused of tolerating corruption and fraud in taxation

Somalia: UN mission head condemns deadly terrorist attacks in Mogadishu, Galkayo

New UN poverty report reveals ‘vast inequalities’ between countries

Niger population’s suffering ‘increasing with each passing month’: UN Refugee Agency

Antitrust: Commission fines Google €4.34 billion for illegal practices regarding Android mobile devices to strengthen dominance of Google’s search engine

Let your fingers do the walking

5 ways governments can unleash the power of young entrepreneurs

Four million Syrian children have only known war since birth: UNICEF

MEPs condemn criminalisation of sex education in Poland

Reforms in Lithuania are reinforcing economic growth but boosting productivity is still a challenge

UN chief urges ‘maximum restraint’ following policy shift over northeastern Syria

What makes a good healthcare professional?

Telemedicine can be a COVID-19 game-changer. Here’s how

Rights of ‘gilets jaunes’ protesters in France, ‘disproportionately curtailed’, say UN independent experts

Why collective action is the key to saving our forests

AI is transforming cybercrime. Here’s how we can fight back

Antitrust: Commission fines hotel group Meliá €6.7 million for discriminating between customers

Parliament to vote on new European Commission on 27 November

Davos on Climate Change: citizens demanding more actions while CEOs tried to balance profit with sustainability

UN Children’s Fund chief condemns ‘horrific’ Kabul bomb attack

4 innovative renewable energy projects powering Europe’s green future

Here’s what COVID-19 teaches us about ‘social learning’ and the environment

How big data can help us fight climate change faster

Here’s how the US can get the best out of 5G

One year on from #MeToo, what’s changed?

Qualcomm to be the next target of EU antitrust regulators? China might be the answer

US and Mexico child deportations drive extreme violence and trauma: UNICEF

One in three fish caught never gets eaten

More Stings?

Advertising

Comments

  1. they’ve been saying this since 1901. Just like they’re sending people to the moon again. Its billions of dollars pumped into the economy via NASA to create and keep hi tech hobs hete and continue advances in technology. The SLS WILL NEVER BE BUILT and if Orion does launch it will go up on existing rockets. in low earth orbit.

  2. Yoginder N Andley says:

    Very well written.

  3. Jack C says:

    None of these hype stories ever mention break even fusion energy output. Achieving high temperatures is not an accomplishment. Pfus / Plaser > 1, where energy generated is greater than the input, is the only acceptable measurement for success.

  4. I am very hopeful and excited about thevrecent developments in this technology. It truly is one of Civilization’s transformative technologies. Once we can develop and scale, it will radically change the world… for the better!

  5. WAYNE OWEN says:

    Now that we can generate Bulk volumes of Dense Electron Hydrogen for Super Chemical Energy Reactions we may not need anything that emits emissions or Radiation. Got to love the Aussie . http://www.subtleatomics.com

Speak your Mind Here

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s